Principles of Geotechnical Engineering 7th edtion

By
Advertisement Flower

Principles of Geotechnical Engineering 7th edtion


Contents
Preface    xiii
1         Geotechnical Engineering—A Historical Perspective    1
1.1   Geotechnical Engineering Prior to the 18th Century    1
1.2   Preclassical Period of Soil Mechanics (1700–1776)    4
1.3   Classical Soil Mechanics—Phase I (1776–1856)    4
1.4   Classical Soil Mechanics—Phase II (1856–1910)    5
1.5   Modern Soil Mechanics (1910–1927)    5
1.6   Geotechnical Engineering after 1927    7
1.7   End of an Era    10
References    12
2         Origin of Soil and Grain Size    15
2.1   Rock Cycle and the Origin of Soil    15
2.2   Soil–Particle Size    24
2.3   Clay Minerals    26
2.4   Specific Gravity (G s )    34
2.5   Mechanical Analysis of Soil    35
2.6   Particle–Size Distribution Curve    42
2.7   Particle Shape    46
2.8   Summary    47
Problems    47
References    50
3         Weight–Volume Relationships    51
3.1   Weight–Volume Relationships    51
3.2   Relationships among Unit Weight, Void Ratio, Moisture Content,
and Specific Gravity    543.3   Relationships among Unit Weight, Porosity,
and Moisture Content    57
3.4   Various Unit-Weight Relationships    59
3.5   Relative Density    64
3.6   Comments on e max and e min 67
3.7   Summary    68
Problems    69
References    72
4         Plasticity and Structure of Soil    73
4.1   Introduction    73
4.2   Liquid Limit (LL)    74
4.3   Plastic Limit (PL)    78
4.4   Shrinkage Limit (SL)    81
4.5   Liquidity Index and Consistency Index    83
4.6   Activity    84
4.7   Plasticity Chart    87
4.8   Soil Structure    88
4.9   Summary    93
Problems    93
References    94
5         Classification of Soil    95
5.1   Textural Classification    95
5.2   Classification by Engineering Behavior    98
5.3   AASHTO Classification System    98
5.4   Unified Soil Classification System    102
5.5   Summary and Comparison between the AASHTO
and Unified Systems    104
Problems    112
References    113
6         Soil Compaction    114
6.1   Compaction—General Principles    114
6.2   Standard Proctor Test    115
6.3   Factors Affecting Compaction    118
6.4   Modified Proctor Test    122
6.5   Structure of Compacted Clay Soil    127
6.6   Effect of Compaction on Cohesive Soil Properties    129
vi   Contents6.7   Field Compaction    132
6.8   Specifications for Field Compaction    136
6.9   Determination of Field Unit Weight of Compaction    140
6.10   Compaction of Organic Soil and Waste Materials    144
6.11   Special Compaction Techniques    147
6.12   Summary and General Comments    155
Problems    155
References    157
7         Permeability    160
7.1   Bernoulli’s Equation    160
7.2   Darcy’s Law    162
7.3   Hydraulic Conductivity    164
7.4   Laboratory Determination of Hydraulic Conductivity    166
7.5   Relationships for Hydraulic Conductivity—Granular Soil    172
7.6   Relationships for Hydraulic Conductivity—Cohesive Soils    177
7.7   Directional Variation of Permeability    180
7.8   Equivalent Hydraulic Conductivity in Stratified Soil    182
7.9   Permeability Test in the Field by Pumping from Wells    187
7.10   In Situ Hydraulic Conductivity of Compacted Clay Soils    189
7.11   Summary and General Comments    192
Problems    193
References    196
8         Seepage    198
8.1   Laplace’s Equation of Continuity    198
8.2   Continuity Equation for Solution of Simple Flow Problems    200
8.3   Flow Nets    204
8.4   Seepage Calculation from a Flow Net    205
8.5   Flow Nets in Anisotropic Soils    209
8.6   Mathematical Solution for Seepage    211
8.7   Uplift Pressure Under Hydraulic Structures    213
8.8   Seepage Through an Earth Dam on an Impervious Base    214
8.9   L. Casagrande’s Solution for Seepage Through an Earth Dam    217
8.10   Filter Design    219
8.11   Summary    222
Problems    222
References    225
Contents    vii9         In Situ  Stresses    226
9.1   Stresses in Saturated Soil without Seepage    226
9.2   Stresses in Saturated Soil with Upward Seepage    231
9.3   Stresses in Saturated Soil with Downward Seepage    233
9.4   Seepage Force    235
9.5   Heaving in Soil Due to Flow Around Sheet Piles    237
9.6   Use of Filters to Increase the Factor of Safety Against Heave    240
9.7   Effective Stress in Partially Saturated Soil    242
9.8   Capillary Rise in Soils    243
9.9   Effective Stress in the Zone of Capillary Rise    245
9.10   Summary and General Comments    248
Problems    249
References    252
10        Stresses in a Soil Mass    253
10.1   Normal and Shear Stresses on a Plane    253
10.2   The Pole Method of Finding Stresses Along a Plane    258
10.3   Stresses Caused by a Point Load    260
10.4   Vertical Stress Caused by a Line Load    262
10.5   Vertical Stress Caused by a Horizontal Line Load    264
10.6   Vertical Stress Caused by a Strip Load (Finite Width and
Infinite Length)    266
10.7   Vertical Stress Due to Embankment Loading    267
10.8   Vertical Stress Below the Center of a Uniformly Loaded
Circular Area    273
10.9   Vertical Stress at Any Point Below a Uniformly Loaded
Circular Area    275
10.10   Vertical Stress Caused by a Rectangularly Loaded Area    278
10.11   Stress Isobars    285
10.12   Influence Chart for Vertical Pressure    285
10.13   Summary and General Comments    288
Problems    289
References    293
11        Compressibility of Soil    294
11.1   Contact Pressure and Settlement Profile    294
11.2   Relations for Elastic Settlement Calculation    296
11.3   Fundamentals of Consolidation    304
11.4   One-Dimensional Laboratory Consolidation Test    308
viii   Contents11.5   Void Ratio–Pressure Plots    310
11.6   Normally Consolidated and Overconsolidated Clays    313
11.7   Effect of Disturbance on Void Ratio–Pressure Relationship    316
11.8   Calculation of Settlement from One-Dimensional
Primary Consolidation    317
11.9   Compression Index (C c )    319
11.10   Swell Index (C s )    320
11.11   Secondary Consolidation Settlement    326
11.12   Time Rate of Consolidation    330
11.13   Coefficient of Consolidation    338
11.14   Calculation of Consolidation Settlement Under a Foundation    345
11.15   A Case History—Settlement Due to a Preload Fill
for Construction of Tampa VA Hospital    347
11.16   Methods for Accelerating Consolidation Settlement    351
11.17   Precompression    354
11.18   Summary and General Comments    357
Problems    358
References    362
12        Shear Strength of Soil    365
12.1   Mohr–Coulomb Failure Criterion    365
12.2   Inclination of the Plane of Failure Caused by Shear    367
12.3   Laboratory Tests for Determination of Shear Strength
Parameters    368
12.4   Direct Shear Test    369
12.5   Drained Direct Shear Test on Saturated
Sand and Clay    373
12.6   General Comments on Direct Shear Test    376
12.7   Triaxial Shear Test—General    380
12.8   Consolidated-Drained Triaxial Test    381
12.9   Consolidated-Undrained Triaxial Test    389
12.10   Unconsolidated-Undrained Triaxial Test    395
12.11   Unconfined Compression Test on Saturated Clay    397
12.12   Empirical Relationships Between Undrained Cohesion (c u ) and
Effective Overburden Pressure (   )    398
12.13   Sensitivity and Thixotropy of Clay    401
12.14   Strength Anisotropy in Clay    403
12.15   Vane Shear Test    406
12.16   Other Methods for Determining Undrained Shear Strength    411
12.17   Shear Strength of Unsaturated Cohesive Soils    412
12.18   Stress Path    414
12.19   Summary and General Comments    418
Problems    419
References    422
13        Lateral Earth Pressure: At-Rest, Rankine,
and Coulomb    424
13.1   At-Rest, Active, and Passive Pressures    424
13.2   Earth Pressure At-Rest    426
13.3   Earth Pressure At-Rest for Partially Submerged Soil    429
13.4   Rankine’s Theory of Active Pressure    432
13.5   Theory of Rankine’s Passive Pressure    434
13.6   Yielding of Wall of Limited Height    436
13.7   A Generalized Case for Rankine Active and Passive
Pressures—Granular Backfill    438
13.8   Diagrams for Lateral Earth-Pressure Distribution Against
Retaining Walls    442
13.9   Rankine’s Pressure for c –f Soil—Inclined Backfill    454
13.10   Coulomb’s Active Pressure    457
13.11   Graphic Solution for Coulomb’s Active Earth Pressure    461
13.12   Coulomb’s Passive Pressure    466
13.13   Active Force on Retaining Walls with Earthquake Forces    468
13.14   Common Types of Retaining Walls in the Field    479
13.15   Summary and General Comments    482
Problems    483
References    486
14        Lateral Earth Pressure: Curved Failure Surface    488
14.1   Retaining Walls with Friction    488
14.2   Properties of a Logarithmic Spiral    490
14.3   Procedure for Determination of Passive Earth Pressure
(P p )—Cohesionless Backfill    492
14.4   Coefficient of Passive Earth Pressure (K p )      494
14.5   Passive Force on Walls with Earthquake Forces    498
14.6   Braced Cuts—General    499
14.7   Determination of Active Thrust on Bracing Systems of Open
Cuts—Granular Soil    503
14.8   Determination of Active Thrust on Bracing Systems for
Cuts—Cohesive Soil    504
14.9   Pressure Variation for Design of Sheetings, Struts, and Wales    505
14.10   Summary    509
Problems    509
References    511
15        Slope Stability    512
15.1   Introduction—Modes of Slope Failure    512
15.2   Factor of Safety    514
15.3   Stability of Infinite Slopes    515
15.4   Finite Slopes—General    519
15.5   Analysis of Finite Slopes with Plane Failure Surfaces
(Culmann’s Method)    520
15.6   Analysis of Finite Slopes with Circular Failure
Surfaces—General    523
15.7   Mass Procedure—Slopes in Homogeneous
Clay Soil with f 0    524
15.8   Mass Procedure—Stability of Saturated Clay Slopes
(f 0 Condition) with Earthquake Forces    532
15.9   Mass Procedure—Slopes in Homogeneous c –f Soil    535
15.10   Ordinary Method of Slices    544
15.11   Bishop’s Simplified Method of Slices    548
15.12   Stability Analysis by Method of Slices for
Steady-State Seepage    550
15.13   Other Solutions for Steady-State Seepage Condition    557
15.14   A Case History of Slope Failure    561
15.15   Morgenstern’s Method of Slices for Rapid
Drawdown Condition    565
15.16   Fluctuation of Factor of Safety of Slopes in Clay Embankment
on Saturated Clay    568
Problems    571
References    574
16        Soil-Bearing Capacity for Shallow Foundations    576
16.1   Ultimate Soil-Bearing Capacity for Shallow Foundations    577
16.2   Terzaghi’s Ultimate Bearing Capacity Equation    579
16.3   Effect of Groundwater Table    584
16.4   Factor of Safety    586
16.5   General Bearing Capacity Equation    589
16.6   A Case History for Evaluation of the Ultimate
Bearing Capacity    593
16.7   Ultimate Load for Shallow Foundations
Under Eccentric Load    597
16.8   Bearing Capacity of Sand Based on Settlement    602
16.9   Plate-Load Test    604
16.10   Summary and General Comments    607
Problems    608
References    610
17        Landfill Liners and Geosynthetics    611
17.1   Landfill Liners—Overview    611
17.2   Compaction of Clay Soil for Clay Liner Construction    612
17.3   Geosynthetics    616
17.4   Geotextiles    616
17.5   Geomembranes    619
17.6   Geonets    621
17.7   Single Clay Liner and Single Geomembrane Liner Systems    622
17.8   Recent Advances in the Liner Systems for Landfills    623
17.9   Leachate Removal Systems    624
17.10   Closure of Landfills    627
17.11   Summary and General Comments    628
References    628
18        Subsoil Exploration    629
18.1   Planning for Soil Exploration    629
18.2   Boring Methods    631
18.3   Common Sampling Methods    635
18.4   Sample Disturbance    639
18.5   Correlations for Standard Penetration Test    639
18.6   Other In Situ Tests    644
18.7   Rock Coring    648
18.8   Soil Exploration Report    650
Problems    652
References    653
Answers to Selected Problems    655
Index    662

Flower
Post a Comment
Powered by Blogger.
Don't Forget To Join US Our Community
×
Widget