Earthquake Engineering Theory and Implementation Second Edition International Code

Earthquake Engineering Theory and Implementation Second Edition International Code

CONTENTS

FOREWORD  xi

1.   INTRODUCTION    1

2.   CHARACTERISTICS OF EARTHQUAKES  7
2.1   Causes of Earthquakes    7
2.2   Plate Tectonic Theory  8
2.3   Measures of Earthquakes  10
2.3.1   Magnitude  11
2.3.2   Intensity  11
2.3.3   Instrumental Scale  13
2.3.4   Fourier Amplitude Spectrum  15
2.3.5   Power Spectral Density  15
2.3.6   Response Spectrum  16

3.   LINEAR ELASTIC DYNAMIC ANALYSIS  17
3.1   Introduction  17
3.2   Single Degree of Freedom System  17
3.2.1   System Formulation  17
3.2.2   Response Spectrum of Elastic Systems  20
3.2.3   Design Response Spectrum  24
3.3   Generalized Single Degree of Freedom  27
3.4   Multiple Degrees of Freedom System (MDOF)  35
3.4.1   Multiple Degrees of Freedom System in
2-D Analysis  35
3.4.2   Multiple Degrees of Freedom System in
3-D Analysis  63
3.5   Shear Beam  77
3.6   Cantilever Flexure Beam  85
3.7   Simple Flexure Beam  92
3.8   Axial Beam  95
3.9   Finite Element Methods  96
3.9.1   Finite Element Concept in Structural Engineering         97
3.9.2   Stiffness Matrix (Virtual Work Approach)  98
3.9.3   Mass Matrix (Galerkin Approach)  102
3.9.4   Other Matrices  105
3.9.5   Mass Matrix in 2-D  106
3.9.6   Application of Consistent Mass Matrix  107
3.10 Incoherence  108
Problems  116 vi
4.   NONLINEAR AND INELASTIC DYNAMIC ANALYSIS  123
4.1  Introduction  123
4.2   Single Degree of Freedom System  125
4.3   Numerical Methods  126
4.3.1   Central Differences Method  126
4.3.2   Newmark-   Methods  128
4.3.3   Wilson-   Method  129
4.4   Multiple Degrees of Freedom System  135
4.5   Equivalent Linearization  145
Problems  151

5.   BEHAVIOR OF STRUCTURES UNDER SEISMIC
EXCITATION  153
5.1   Introduction  153
5.1.1   Force Reduction Factor, R  154
5.1.2   Ductility  155
5.1.3   Energy Dissipation Capacity  157
5.1.4   Self-Centering Capacity  158
5.1.5   Frequency Shift  158
5.2   Relationship Between Force Reduction
and Ductility Demand  159
5.2.1   Equal Displacement Criterion  160
5.2.2   Equal Energy Criterion  160
5.2.3   General Relationship Between R and d   161
5.3   Relationship Between Global Ductility and
Local Ductility  168
5.4   Local Ductility Capacity  170
5.5   Evaluation of Monotonic Local Ductility Capacity  170
5.5.1   Monotonic Behavior of Concrete  170
5.5.2   Monotonic Behavior of Steel  172
5.5.3   Idealized Strain Compatibility Analysis  173
5.5.4   General Strain Compatibility Analysis  185
5.6   Evaluation of Cyclic Local Ductility Capacity  192
5.6.1   Cyclic Behavior of Concrete  192
5.6.2   Cyclic Behavior of Steel  193
5.6.3   Cyclic Strain Compatibility Analysis  194
5.7   Precast Concrete Structures  195
5.8   Effect of Structure Configuration on Ductility  197
5.9   Second Order Effect on Ductility  198
5.10 Undesirable Hysteretic Behavior  198
5.11 Effect of Axial Load on Hysteretic Behavior  200
5.11.1 Rigid Bar Idealization  201
5.11.2 Energy Dissipation Factor ( N )  205
5.12 Design Considerations  207
5.13 Capacity Design  209 vii

5.14 Pushover Analysis  212
5.15 Recommended Versus Undesirable Structural
Systems  213
5.16 Strain Rate  215
Problems  217

6.   DESIGN OF EARTHQUAKE-RESISTANT BUILDINGS (ICC)   223
6.1   Introduction  223
6.2   Definition of Structural Components  224
6.3   Seismic Design Category  226
6.4   Zoning Classification  227
6.5   Response Spectra  228
6.6   Design Requirements of Seismic Design Categories          229
6.7   Earthquake-Induced Forces  230
6.7.1   Regularity of Structures  232
6.7.2   Simplified Lateral Force Analysis Procedure  234
6.7.3   Equivalent Lateral Force Procedure  240
6.7.4   Modal Response Spectrum Analysis  247
6.7.5   Time-History Analysis  257
6.7.6   Directional Effect  262
6.9   Definitions and Requirements of Structural Systems           276
6.10 Special Topics  276
6.10.1 Diaphragm Design Forces  276
6.10.2 Torsional Effect  277
6.10.3 Drift Limitations  277
6.10.4 Building Separation  278
6.10.5 P-   Effect  279
Appendix 6-1: Tables  280

7.   SEISMIC PROVISIONS OF REINFORCED CONCRETE
STRUCTURES (ACI 318)  285
7.1   Introduction  285
7.2   Ordinary Moment Frames (OMF)   286
7.2.1   Ordinary Beams  286
7.2.2   Ordinary Beam-Columns  295
7.3   Intermediate Moment Frames (IMF)   309
7.3.1   Intermediate Beams  309
7.3.2   Intermediate Beam-Columns  311
7.4   Special Moment Frames (SMF)  321
7.4.1   Special Beams  323
7.4.2   Special Beam-Columns  326
7.4.3   Special Joints  331
7.5   Ordinary Shear Walls (OSW)  343 viii
7.6   Special Shear Walls (SSW)   355
7.6.1   Special Shear Walls without Openings  356
7.6.2   Special Shear Walls with Openings  366
7.7   Coupling Beams  368
7.8   Diaphragms and Trusses  370
7.9   Foundations  373
7.10 Precast Concrete  374
7.10.1 Precast Special Moment Frames   375
7.10.2 Precast Intermediate Shear Walls  376
7.10.3 Precast Special Shear Walls  377
7.11 Nonseismic-Resisting Systems  377
Appendix 7-1: Design Charts  380

8.   INTRODUCTION TO THE AISC SEISMIC PROVISIONS
FOR STRUCTURAL STEEL BUILDINGS  389
8.1   Introduction  389
8.2   General Requirements  390
8.3   Structural Systems  392
8.3.1   Ordinary Moment Frames (OMF)  392
8.3.2   Intermediate Moment Frames (IMF)  393
8.3.3   Special Moment Frames (SMF)  394
8.3.4   Special Truss Moment Frames (STMF)  396
8.3.5   Ordinary Concentrically Braced Frames (OCBF)       398
8.3.6   Special Concentrically Braced Frames (SCBF)         399
8.3.7   Eccentrically Braced Frames (EBF)  401
8.4.  Allowable Stress Design Approach  405
Appendix 8-1: Tables  407

9.   DESIGN OF EARTHQUAKE-RESISTANT BRIDGES
(AASHTO CODE)  409
9.1   Introduction  409
9.2   AASHTO Procedures for Bridge Design  411
9.3   Response Spectra  413
9.4   Single-Span Bridges  415
9.5   Bridges in Seismic Zone 1  415
9.6   Bridges in Seismic Zone 2  417
9.7   Bridges in Seismic Zones 3 and 4  417
9.8   Methods of Analysis  418
9.8.1.1    Continuous Bridges  419
9.8.1.2    Discontinuous Bridges  429
9.8.2     Single-Mode Spectral Method  430
9.8.2.1    Continuous Bridges  430
9.8.2.2    Sinusoidal Method for Continuous Bridges     438
9.8.2.3    Discontinuous Bridges  443
9.8.2.4    Rigid Deck Method for
Discontinuous Bridges  448
9.8.3   Multiple Mode Spectral Method  455
9.8.4   Time History Method   456
9.8.5   Directional Effect  457
9.10 Design Requirements  458
9.11 Design Requirements of Reinforced Concrete
Beam-Columns  459
9.11.1 Bridges in Seismic Zone 1  459
9.11.2 Bridges in Seismic Zone 2  460
9.11.3 Bridges in Seismic Zones 3 and 4  464
9.12 Design Requirements of Reinforced Concrete
Pier Walls  465
9.13 Special Topics  467
9.13.1 Displacement Requirements (Seismic Seats)  467
9.13.2 Longitudinal Restrainers  468
9.13.3 Hold-Down Devices  468
9.13.4 Liquefaction  468

10.  GEOTECHNICAL ASPECTS AND FOUNDATIONS  469
10.1 Introduction  469
10.2 Wave Propagation  470
10.3 Ground Response   472
10.4 Liquefaction  474
10.5 Slope Stability  478
10.6 Lateral Earth Pressure  479
10.7 Foundations  481
Appendix 10-1: Tables  487

11.  SYNTHETIC EARTHQUAKES  491
11.1 Introduction  491
11.2 Fourier Transform  492
11.3 Power Spectral Density  495
11.4 Stationary Random Processes  496
11.5 Random Ground Motion Model  497
11.6 Implementation of Ground Motion Model  503
11.7 Validity of Synthetic Earthquakes  503 12.  SEISMIC ISOLATION  509
12.1 Introduction  509
12.2 The Seismic Isolation Concept  510
12.4 Analysis of Seismically Isolated Structures  513
12.5 Design of Seismically Isolated Structures  513
Appendix 12-1: Design Tables and Charts  523

BIBLIOGRAPHY  525

INDEX            531

UNIT CONVERSION TABLE  537