New Updates

Concrete Pavement Design, Construction, and Performance

Concrete Pavement Design,Construction, and Performance

Contents

List of Figures ix
List of Tables xiii
Acknowledgements xv
1   Introduction 1
2   Types of concrete pavements 25
3   Performance 46
4   Subgrades, subbases, and drainage 69
5   Selection of concrete materials 95
6   Mixture design and proportioning 111
7   Design fundamentals 129
8   Highway pavement design 155
9   Light duty pavement design 172
10   Airport pavement design 199
11   Industrial pavement design 221
12   Transitions, special details, and CRCP reinforcement 231
13   Subgrade and subbase construction 249
14   Paving 262viii   Contents
15   Finishing, texturing, curing, and joint sawing and sealing 279
16   Concrete pavement maintenance 306
17   Rehabilitation 315
18   Overlays and inlays 330
Bibliography 351
Index 367

Figures
1.1     Dowel and tie bar baskets placed in preparation for
slipform paving (photo courtesy of The Great Lakes
Construction Company, Hinckley, Ohio). 7
1.2     (a) and (b) Slipform pavers (photo courtesy of The Great
Lakes Construction Company, Hinckley, Ohio). 8
1.3     Finishing slipformed pavement around a banked curve
(photo courtesy of The Great Lakes Construction
Company, Hinckley, Ohio). 9
2.1     Jointed plain concrete pavement (JPCP) (courtesy:
ACPA). 26
2.2     Jointed reinforced concrete pavement (JRCP) (courtesy:
ACPA). 28
2.3     Continuously reinforced concrete pavement (CRCP)
(courtesy: ACPA). 29
2.4     Dowel basket assembly with corrosion resistant
epoxy-coated dowels (photo by author). 31
2.5     Doweled joint (FAA 2004: 86, 86–1). 32
2.6     Tie bar basket assemblies with corrosion resistant
epoxy-coated tie bars – dowel baskets are also shown
(photo by author). 33
2.7     Longitudinal joint (FAA 2004). 34
2.8     Header and dowel basket for a transverse construction joint
(photo by author). 34
2.9     Expansion joint detail (FHWA 1990a). 36
2.10   RCC pavement construction – Columbus, Ohio (photo by
author). 44
2.11   Permeability of a pervious pavement demonstration
project – Cleveland, Ohio (photo by author). 45
3.1     Corner breaks (ACPA 1996a: VIII-16). 47
3.2     High severity D-cracking (Miller and Bellinger 2003: 37). 49
3.3     High severity longitudinal crack (Miller and Bellinger
2003: 39). 50x   Figures
3.4     High severity transverse crack in JRCP (Miller and
Bellinger 2003: 41). 50
3.5     High severity transverse joint spalling (ACPA 1996a:
VIII-47). 52
3.6     Map cracking (Miller and Bellinger 2003: 48). 53
3.7     Scaling (Miller and Bellinger 2003: 48). 54
3.8     Polished aggregate surface (Miller and Bellinger 2003: 49).          55
3.9     Blowup (Miller and Bellinger 2003: 52). 56
3.10   Faulted transverse joint (photo by author). 57
3.11   Water bleeding and pumping (Miller and Bellinger 2003: 58).       60
3.12   High severity punchout (Miller and Bellinger 2003: 79). 61
4.1     Roadway geometry inputs for concrete pavement drainage
design. 88
4.2     Computation of inflow. 88
4.3     Determining the permeability of the base. 89
4.4     Designing the base by the depth-of-flow method. 89
4.5     Checking the base design by the time-to-drain method. 90
4.6     User-defined subgrade material. 91
4.7     Checking need for a separator layer. 91
4.8     Edge-drain design. 93
5.1     Combined aggregate relationship (coarseness factor) chart
(courtesy: Shilstone and Shilstone 2002). 102
6.1     Comparison of PCA 1984 and StreetPave fatigue
relationships. 117
7.1     Curling stress correction factors for a finite slab (after
Bradbury 1938). 133
7.2     Corner, edge, and interior loading. 135
7.3     Maximum joint spacing based on slab thickness D
and modulus of subgrade reaction k for L/ ≤ 5 0 in
(a) U.S. customary units and (b) metric units. 144
8.1     WinPAS solution to design problem. 162
8.2     Spreadsheet solution to AASHTO 1998 design example. 164
8.3     Spreadsheet faulting check for AASHTO 1998 design. 165
8.4     Sensitivity analysis for AASHTO 1998 design. 166
9.1     StreetPave traffic major arterial traffic category. 178
9.2     StreetPave life cycle cost module input screen. 181
9.3     Design example traffic inputs. 182
9.4     Design example pavement inputs. 183
9.5     Concrete pavement design. 184
9.6     Design example fatigue and erosion table. 185
9.7     Rounding considerations. 185
9.8     Sensitivity of slab thickness to k-value. 186
9.9     Quadrant construction at an urban intersection in
Cleveland, Ohio (photo by the author). 196Figures   xi
10.1     FAA R805FAA.xls rigid airport pavement design
spreadsheet. 211
10.2     FAA R805FAA.xls rigid airport pavement design
spreadsheet frost design. 211
10.3     FAA R805FAA.xls rigid airport pavement design
spreadsheet computation of composite k-value. 212
10.4     Determining critical aircraft. 213
10.5     LEDFAA basic input screen. 214
10.6     Sample rigid pavement section from the LEDFAA
samples file. 215
10.7     Aircraft traffic mix. 216
10.8     Example problem rigid pavement section as designed. 218
11.1     RCCPave vehicle library. 224
11.2     RCCPave design results for example 1. 226
11.3     RCCPave design inputs for example 2. 227
12.1     Combination chair and transverse steel detail
1 in = 25 4 mm (FHWA 1990b). 243
12.2     Lug anchor treatment 1 in = 25 4 mm 1 ft = 305 mm
(FHWA 1990b). 245
12.3     Recommended WF steel beam terminal joint design
1 in = 25 4 mm 1 ft = 305 mm (FHWA 1990b). 247
14.1     Slipform paving train (ACPA 1996a: VI-6). 264
14.2     Concrete pavement produced by slipforming (ACPA
1996a: VI-6). 265
14.3     Stringline and paver sensing wand (ACPA 1996a: VI-15).        266
14.4     The pad line (ACPA 1996a: VI-20). 267
14.5     Vibrators (ACPA 1996a: VI-26). 268
14.6     Dowel basket (ACPA 1996a: VI-88). 269
14.7     Dowel bar inserters (ACPA 1996a: VI-32). 270
14.8     CRCP steel installation with tube feeders (ACPA 1996a:
VI-37). 271
14.9     Fixed form paving (ACPA 1996a: VI-68). 272
14.10   Steel forms for fixed form paving (ACPA 1996a: VI-72).          273
14.11   Blockouts for utility, drainage, and similar structures
(ACPA 1996a: VI-91). 274
15.1     Transverse tining to provide macrotexture (ACPA 1996a:
VI-53). 280
15.2     Burlap drag to provide microtexture (ACPA 1996a: VI-53).     280
15.3     Transverse joint initial and widening cut (ACPA 1996a:
VII-11). 290
15.4     Properties of rough asphalt concrete subbase. 301
15.5     Concrete mixture proportions. 302
15.6     Construction inputs. 303
15.7     Environmental inputs. 304xii   Figures
15.8     Results of analysis. 304
15.9     Evaporation rate predictions. 305
16.1     Effect of delay in applying a maintenance treatment. 307
16.2     Falling weight deflectometer (photo by the author). 310
17.1     Hole prepared for a full depth repair at a joint (ACPA
1996a: VIII-28). 317
17.2     Partial depth repair (ACPA 1996a: VIII-57). 318
17.3     Full depth repair with dowels and fiberboard for isolation
(ACPA 1996a: VIII-41). 320
17.4     Dowel bar retrofit (ACPA 1996a: VIII-66). 323
17.5     Diamond grinding (ACPA 1996a: VIII-11). 325
17.6     Grout injection for slab stabilization (ACPA 1996a:
VIII-23). 328
18.1     Joint mismatching (Smith et al. 2002: 4–9). 333
18.2     Lane widening options (Smith et al. 2002: 4–12). 334
18.3     Unbonded overlay on two lanes with a third lane paved at
the same time (photo courtesy: Dale Crowl). 335
18.4     A transition detail for bridge approaches and overpasses
for unbonded overlays (Smith et al. 2002: 4–13). 335
18.5     Saw cutting for whitetopping with ruts (figure courtesy:
ACPA, Smith et al. 2002: 5–12). 343
18.6     A transition detail for bridge approaches and overpasses
for whitetopping (figure courtesy: ACPA, Smith et al.
2002: 5–9). 343
18.7     Output of ACPA UTW calculator
(http://www.pavement.com/Concrete_
Pavement/Technical/UTW_Calculator/index.asp). 346
18.8     UTW placed as an inlay (photo by the author). 347
18.9     Failure of UTW by panel sliding (photo by the author). 348
18.10   UTW-thickened end transition detail (figure courtesy:
ACPA, Smith et al. 2002: 6–7). 349Tables
4.1   Recommended k-value ranges for various soil types
(adapted from Hall et al. 1997: 80, AASHTO 1998: 6) 72
4.2   Effect of untreated subbases on k-values (PCA 1984: 6) 75
4.3   Effect of cement-treated subbases on k-values (PCA 1984: 6)        75
4.4   Effect of untreated subbases on k-values (FAA 2004: 15) 75
4.5   Effect of stabilized subbases on k-values (FAA 2004: 57) 76
4.6   Conditions where no subbase is required (FAA 2004: 55,
Table 3.10) 77
6.1   Sample concrete mixture designs for early opening to traffic
(Van Dam et al. 2005: A-1–A-2) 127
7.1   Dowel bar diameter recommendations (ACPA 1998: 27,
ACI Committee 2002 325: 15) 149
7.2   Tie bar spacing recommendations in mm (in) 152
8.1   Reliability and standard normal deviate Z R (AASHTO
1993, I-62 and II-9) 158
8.2   Drainage coefficients Cd (AASHTO 1993, II-26) 159
8.3   Load transfer coefficients J by pavement type (AASHTO
1993, II-26) 159
8.4   Input values for design example (AASHTO 1993, II-45) 161
8.5   Sensitivity analysis – effect of design parameters on
thickness D 162
9.1   Street and parking lot traffic classifications from ACI
325.12R-11 and ACI-330R-6 (ACI Committee 325 2002:
11, ACI Committee 330 2001: 6) 174
9.2   StreetPave traffic categories from help file 177
9.3   Traffic categories – axles per 1000 trucks 179
9.4   Pavement thickness design tables, aggregate interlock joints,
no edge-support 187
9.5   Pavement thickness design tables, aggregate interlock joints,
supported edges 190
9.6   Pavement thickness design tables for pervious concrete 192
10.1   Landing gear type conversion factors (FAA 2004: 25) 203xiv   Tables
10.2   Forecast traffic and equivalent annual departures (FAA
2004: 26) 203
10.3   Maximum joint spacing for unstabilized base (FAA
2004: 87) 207
10.4   FAA dowel bar recommendations (FAA 2004: 88) 208
10.5   Traffic mix for LEDFAA design example 217
12.1   AASHTO CRCP percent steel design example (AASHTO
1993 II-56–II-62) 238
12.2   Recommended longitudinal reinforcement sizes (FHWA
1990b) 242
12.3   Recommended WF beam dimensions (FHWA 1990b) 246
15.1   Joint sealing materials (ACPA 1996a: VII-32) 292
15.2   Typical values for PCC CTE (modified from AASHTO
1993: II-29) 294
15.3   Typical values for PCC coefficient of shrinkage
(modified from AASHTO 1993: II-29) 294


Flower

About Author:

I am Thomas Britto here to share my experiences in the civil engineering field to all my readers.Today many students are struggling to buy books at high prices. So I decided to start a blog and share my experience and knowledge with all my readers.


Let's Get Connected: Twitter | Facebook | Google Plus

No comments