# Strength Of Materials & Structural Design Multiple Choice Questions And Answers

Strength Of Materials & Structural Design

1.  The property by which a body returns to its original shape after removal of the load is called,
a.  Plasticity    b. Elasticity     c.Ductility       d. Malleability

2.  The property of a material which allows of its being drawn out of tension to a smaller section, is called
a.Plasticity      b. Elasticity     c.Ductility       d. Malleability

3.  The property of a material by which it can be beaten or rolled into plates, is called
a. Malleability     b. Ductility      c.Plasticity     d.Elasticity

4.  As the elastic limit reaches, tensile strain
a. increases more quickly                b. decreases more quickly
c. incrases in proportion to the stress         d. decreases in proportion  to the stress

5.  The stress necessary to initiate yielding is considerably
a.   more  than  that  necessary  to  continue  it            b.  less  than  that  necessary  to
continue it
c.   more than that necessary to stop it             d. less than necessary to stop it

6.  The phenomenon of slow extension of materials i.e, increasing with the  time having
a. creeping                          b.yielding
c.breaking                            d.none of the above

7.the stress at which extension of a material takes place more quickly as compared to the increase in load, is called
a.elastic point of the material             b.  plastic point of the material
c. breaking point of the material        d.yielding point of the material

8.  Every material obeys the Hooke’s law within its
a. elastic limit     b.plastic limit
c. limit of proportionality       d.none of the above

9.  Material which have the same elastic properties in all directions, are called
a.isotropic material             b.brittle materials
c.  homogenous materials    d. hard material

10. The law which states that within elastic limits strain produced is proportional to stress producing it, is known is
a.Bernoulli’s law      b.stress law      c. Hooke’s law    d.Poisson’s law       e.none of the above

11. When equal and opposite forces applied to a body tend to elongate it  so produced in it is called,
a.shear stress       b.compressive stress
c. tensile stress              e. transverse stress

12. Which one of the following statements is false.
The under mentined type is simple strain.
a. tensile strain    b. compressive strain
c. shear strain      d.tensile stress e. volumetric strain

13. For a solid cube, subjected to equal normal forces of the same type on all its faces, the volumetric strain will be x-times the linear strain in any of the three axes when
a. x=1    b. x=2    c. x=3    d.x=4

14. If the length of a bar held vertically and subjected to a load at its lower end is large,  its own weight produces additional stress and the resultant maximum stress will be
a. at the lower section               b. at the built in upper cross-section
c. at the central cross-section    d. at every point of the bar

15. If the stess produced by a prismatic bar is equal to the working stress, the area of the cross-sectin of the prismatic bar becomes
a. zero     b. infininte
c. maximum      d. minimum

16. The ratio o f the elongations of a conical bar under the action of its own weight and that of a prismatic bar of the same length, is
a. ½       b.1/3      c.1/4      d.1/5  e.1/6

17.If  all  the  dimensions  of  a  bar  are  incresed  in  the  proportion  n:1,  the  proportion  with which the maximum stress produced in the prismatic bar by its own weight, will increase in the ratip
a.1:n      b. n:1     c.1:1/n   d.1/n:1   e.1:n 1/2

18. If the stress in each cross-section of a pillar is just equal to its working stress, its form called
a. form of equal stress   b. form of equal section
c. form of equal strength        d. none of these

19. For  a  given  material,  if  E,C,K  and  m  are  Young’s  modulus,  shearing  modulus,  bulk modulus and Poisson, ratio, the following relation does not hold good
a.   E = 9KC/(3K+C)              b.  E = 2K(1-2/m)                   c.E= 2C(1+1/m)
d. 1/m = (3K-2N)/(6K+2N)    e.E = 3C(-1/m)

20. a steel rod of 2cm diameter and 5m long is subjected to an axial pull of 3000kg. If E = 2.1x10 6  kg/cm 2  , the elongation of the rod will be
a.2.275cm       b.0.2275cm
c. 0.02275cm  d. 2.02275cm

21. If a steel rod of 20mm dia and 5m long elongates by 2.275mm when subjected to an axial pull of 3000kg , the stress developed is
a. 9.5541kg/cm 2             b. 95.541kg/cm 2
c.955.41kg/cm 2              d.9554.1kg/cm 2

22.When two plates butt together and are riveted with cover plates with two rows of rivets, the joint is known as
a.lap joint          b. butt joint       c. single riveted single cover butt joint
d.double riveted double cover butt joint

23. If the rivets in djacent rows are staggered and the outermost row has only one rivet, the arrangement of the rivets, is called
a. chain riveting            b. zig-zig riveting
c. diamond riveting       d. none of the above

24. The distance between the centres of adjacent rivets in the same row, is called
a. pitch   b. lap     c. gauge            d. staggered pitch

25. which  one  of  the  following  statements  is  more  appropriate  to  justify  the  failure  of riveted joints
a.   tearing of the plates between the rivet hole and the edgeof the plate
b.  tearing of plates between rivets
c.   shearing of rivets
d.  crushing of rivets
e.   all the above

26. The  diameter  d    of  a  rivet  to  suit  the  thickness(t)  of  a  plate  may  be  determined  by Unwin’s formula
a.d=6.05(t) 1/2        b. d= 1.5t+4
c. d=(5t) 1/2              d.d=t 1/2  +1.5

27. The minimum number of rivets for the connection of a gusset plate,is
a. 1        b.2         c.3         d.4

28. The weakest section of a diamond riveting is the section which passes through
a.   the first row          b.the second row
c.  the central row       d. one rivet hole of the end row

29. If b is the width of a plate joined by diamond riveting of diameter d, the efficiency of the joint is given by
a. (b+d)/b          b. (b-d)/b           c. (d-b)/d           d. (b-d)/d

30. In  case  of  an  eccentric  loading  on  a  bracket  subjected  to  moment(M),  the  tangential force developed in any rivet, at right angles to its radius vector(r) is Mr/r 2

31. which one of the following  statements is incorrect.
a.   the cross-sectional area of the welded member is effective
b.  a welded joint has the strength of the parent metal itself
c.   welded joints provide rigidity
d.  welded joints have better finish
e.   the process of welding takes more time than riveting

32. The type of butt joints is common use is
a.   single inverted v-butt joint
b.  double v-butt joint
c.   double u-butt joint
d.  single v-butt joint

33. The maximum load to which a fillet joint of lengthL can be subjected to equals
a.   0.7 x S x fillet size x L
b.  2 x S x fillet size x L
c.   permissible shear stress x fillet size x L
d.  S x fillet size x L/3

34. The maximum resistance against rotation is offered by the weld at a  point
a. most distant b. least distant   c. at either end   d.centrally located

35.A long one principal plane subjected to maximum principal stress
a.   the maximum shear stress acts
b.  the minimum shear stress acts
c.   no shear stress acts
d.  none of the above

36.If  the  normal  cross-section  (A)  of  a  member  is  subjected  to  a  tensile  forceP,  the resulting normal stress in an oblique plane inclined at angle θ to transverse plane will be
a.Psin 2  θ/A      b.Pcos 2     θ   /A    c. Psin2θ/2A      d. Pcos2θ/2A

37. If  a  member  is  subjected  to  tensile  force  P,  having  its  normall  cross-section(A)  the resulting shear stress in an oblique plane inclined at an angle θ to its transverse plane,will be
a. Psin 2θ θ/A      b.Psin2θ/2A      c.Pcos2θ/2A
d.Pcos 2 θ/A        e. Asin2θ/P

38. The ratio of the tensile stress developed in the wall of a boiler in the circumferential direction to the tensile stress in the axial direction is equal to
a.4         b.3         c.2         d.1

39. If tow tensile forces mutually perpendicular act on a rectangular parallelopiped bar are equal, the resultilng elongtion of the pipe,is

40. A bending moment may be defined as
a.   the  arithimetic  sum  of  the  moments  of  all  the  forces  on  either  side  of  the section
b.  the rithmetical sum of the forces on either side of the section
c.   the algebraic sum of the moments of all the forces on either side of the section
d.  none of the above

41. The shear for(F) and th ebending moment M at a section are related by
a.F=My/I           b. F = M/Z        c. F = dM/dx     d. F = MIx
Where Z and I are the section modulus and moment of inertia of the section

42.at either end of a plane frame, maximum number of possible transverse shear forces are
a. one    b.two     c. three   d. four   e.zero

43. At either end of a plane frame, maximum number of possible bending moments are
a. one    b.two     c. three   d. four   e.zero

44. a simply supported beam of a span L carries a udlW . the maximum bending moment M is equal to
A.WL/2             B.WL/4             C.WL/8             D.WL/12
E.WL/16

45. A  simply  supported  beam  carries  tow  equal  concentrated  loads(W)  at  distances  L/3 from either support. The maximum bending moment(M) introduced will be
a. WL/3             b. WL/4            c. 5WL/8
d.3WL/10         e.3WL/5

46. A  simply suppported beam of spanL  carries a  concentrated load W at it s midspan. The maximum  bending moment(M) is equal to
a. WL/2             B. WL /4           c. WL/8             d.WL/12
e.   WL/16

47. The shape of the bending moment ove r the length of a beam having no external load , is always
a. linear    b. parabolic       c. cubical          d. circular

48. The shape of the bending moment over the length of a beam, carrying a udl is always
a. linear    b. parabolic       c. cubical          d. circular

49. The  shape  of  the  bending  moment  over  the  length  of  a  beam,  carrying  a  uniformly varying load , is always
a. linear    b. parabolic       c. cubical          d. circular

50. The  maximum  bending  moment  due  to  moving  load  on  a  simply  supported  beam, occurs
a.   at the mid span
b.  at the supports
d.  every where along the beam
e.   none of the above

51. For a simply supported beam with a central load, the bending moment will be
a.   lest at the centre       b.  lest at the supports
c.maximum at the supports     d.maximum at the centre

52. for a cantilever with udl (W) over its entire length(L) , the maximum bending moment will be
a. WL           b. WL/2         c.WL/3          d. W 2 L/2          e.WL 2 /3

53. For    a  simply  supported  beam  carrying  udl  W    on  its  entire  lengthL,  the  maximum bending moment will be
a.WL/4    b.WL/8    c.WL/2    D.WL/3 e.WL/6

54. The bending moment on a section is maximum where shearing force
a. is maximum   b. minimum      c. is equal          d. changes sign

55. For  a  beam  of  uniform  strength,  keeping  its  depth  constant,  the  width  will  vary  in proportion  to
a.   bending momentM  b.M 1/2     c.   M 2                d.None of the above

56. A beam is said to be of uniform strength, if
a.   B.M. is same throughout the section
b.  Shear stress is same throught the section]\
c.   Deflection is same throught the beam
d.  Bending stress is same at every section along its longitudinal axis

57. In  a  continous  curve  of  bending  moment,  the  point  of  zero  B.M.  ,  where  it  changes sign, is called\
a. the point of inflexion            b. the point of contraflexure
c. the point of virtual hinge      d. all the above
58.In a simply supported beam(L) with triangular load(W) varying from zero at one end to the maximum value at the other end, maximum bending moment will be
a. WL/3             b.WL/(9√3)       c.WL/4
d.WL 3 /(9√3)     e. WL/8

59.The following assumption relates to the theory of simple bending
a.   the value of the Young’s modulus is the same in tension as well as compression
b.  transverse section of the beam remains plane before and after bending
c.   the material of the beam is homogeneous and isotropic
d.  the resultant pull or thrust ana transverse section of the beam is zero
e.   all the above

60. A long the neutral axis of a simply supported beam
a.   the fibres do not undergo strain
b.  the fibres undergo minimum strain
c.   the fibres undergo maximum strain
d.  none of the above

61.Pick up the incorrect statement from the following
The radius of gyration of a rectangular section is proportional to
a.   square of the depth of the section
b.  square root of the inverse of the are
c.   square root of the moment of inertia
d.  square root of the area of the section
e.   none of the above

62.  The  ratio  of  th  emoment  of  invertia  of  a  circular  plate  to  that  of  a  square  plate  for equal depth,is
a. less than one  b.equal to one  c. more than one
d.equal to 6π     e. none of the above

63. ‘the section modulus of a section is proportional to
a.   area of the section
b.  square of the area of the section
c.   product of the area and depth
d.  product of the are and width
e.   half moment of inertia of the section

64. The shear force on a simply supported beam is proportional to
a.   displacement of the neutral axis
b.  sum of the forces
c.   sum of the transverse forces
d.  alglebraic sum of the transverse foces
e.   curvature of the neutral axis

65. Pick up the correct statement from the following
a.   the  point  through  which  the  resultant  of  the  shear  stresses  passes  is
known as shear centre
b.  instandard  rolled  channels,  the  shear  centre  is  on  the  horizontal  line
passing through and away from the c.g. beyond web
c.   in  equal  angles,  the  shear  centre  is  on  the  horizontal  plane  and  away
from the c.g.outside of the leg projection
d.  in T-sections, the shear centre is at the c.g. of the section
e.   all the above

66. Bending equation is
a. M/I = R/E = F/Y    b.I/M = E/R = Y/F
c.M/I = E/R = F/Y      d. M/I = R/E = Y/F

67. the intensity of direct longitudingal stress in the cross-section at any   point distant r from the neutral axis is proportional to
a. r         b.1/r      c.r 2            d.1/r 2       e.r 3

68.  The  maximum  compressive  stress  at  the  top  of  a  beam  was  1600kg/cm 2   and  the corresponding  tensile  stress  at  its  bottom  was  400kg/cm 2.If  the  depth  of  the  beam was10cm, the neutral axis from the top will be
a.2cm    b.4cm    c.6cm    d.8cm    e.10cm

69. a reinforced concrete beam is assumed to be made of
a.   homogeneous material
b.  heterogeneous  material
c.   isotropic material
d.  none of the above

70. If the beam of constant section is subjected throughout its length to a uniform bending moment, it will bend to
a.   a circular arc
b.  a parabolic arc
c.   a catenary
d.  none of the above

71. The maximum deflection of a beam of lengthL simply supported  at its  ends with a central load W will be
a.   WL 2 /48EI
b.  W 2 L/24EI
c.   WL 3 /48EI
d.  WL 2 /8EI
e.   WL 2 /36EI

72. The ratio of the maximum deflections of a beam simply supported at its end with an isolated centralload and that with udl over its entire length,is
a.1         b.15/24    c.24/15     d.2/3     e.3/2

73.The ratio of the maximum deflection of a cantilever beam with an isolated load at its free end and with a udl over its entire length ,is
a. 1        b.24/15    c.3/8      d.8/3      e.5/8

74. In a cantilever maximum deflection due to pure bending moment(M) at its  free end,is
a.ML 2 /3EI     b.ML 2 /4EI    c. ML 2 /6EI       d. ML 2 /2EI      e.ML 2 /5EI

75. A cantilever carries a udl (W) over its whole length and a force(W) acts at its free end upward. The net deflection of the free end will be
a.   5WL 3 /24EI upward
b.  zero
c.   5WL 3 /24EI downward
d.  none of the above

76.A cantilever carrying udl (W) over its full length is propped at its free end such that it is at the level of the fixed end. The bending moment will be zero at its free end and also at
a.   the mid point of the cantilever
b.  the fixed point of the cantilever
c.   the 1/4 th  length from free end
d.  the 3/4 th  length from free end
e.   the 1/2 th  length from free end

77. A simply supported beam which carries a udl over the whole span is propped at the cente of the span so tha the beam is heldto the level of the end supports, the reactionof the rop will be equal to
b.  ‘3/8 th   the distributed load
d.  none of the above

78.  A  uniform  girder  simply  supported  at  its  ends  is  subjected  to  a  udl  over  its  entire length, and is propped at the centre so as to neutralise the deflection. The net B.M . at the centre will be equal to
a.   WL
b.  WL/8
c.   WL/24
d.  WL/32
e.   WL/64

79.  The  moment  diagram  for  a  cantilever  whose  free  end  is  subjected  to  a  bending moment, will be a
a. triangle          b. rectangle       c.parabola  d.   cubic parabola

80. The moment diagram for a cantilever carrying linearly varying load from zero at its free end and maximum at the fixed end will be a
a. triangle          b. rectangle
c. parabola        d. cubic parabola

81. The moment diagram for a cantilever which is subjected to udl will be a
a. triangle          b. rectangle
c. parabola        d. cubic parabola

82. The moment diagram for a cantilever carrying concentrated load at its free end, will be
a. triangle          b. rectangle
c. parabola        d.cubic parabola

83. shear force diagram for a cantilever carrying a udl over its whole length,is
a. rectangle       b. triangle
c. parabola        d. cubic parabola

84.When a rectangular beam is loaded longitudinally, shear develops on
a.bottom fibre   b. top fibre
c. midddle fibre          d. every horizontal plane

85.  when  a  rectangular  beam  is  loaded  transversely,  the  maximum  compressive  stress develops on
a. bottom fibre   b. top fibre
c. neutral axis    d. every cross section

86. If the shear force along a section of a beam is zero then there B.M. is
a.   zero
b.  maximum
c.   minimum
d.  between maximum and minimum value
e.   none of the above

87. Hooke’s law states that stress and strain are
a.   directly proportional         b.inversely proportional
c.    curvilinerly related.          d. none of the above

88. a cantilever beam rectangular in cross section is subjected to an isolated load at its free end. If the width of the beam is doubled, the deflection of the free end will be changed in the ratio of
a.   8
b.  1/8
c.   ½
d.  2
e.   3

89. A cantilever beam rectangular  in cross-section is subjected to an isolated load at its free end. If the depth of the beam is doubled, the deflection of the free end will be changed in the ratio of
a.   8                 b.  1/8             c.   ½     d.  2       e.   3

90.  If  the  length  of  a  cantilever  carrying  an  isolated  load  at  its  free  end  is  douled,  the defelection of the free end will increase by
a.2times
b.4times
c. 8times
d.  ½ times
e.   3times

91.  If  the  width  of  a  simply  supported  beam  carrying  an  isolated  load  at  its  centre  is doubled, the deflection of the beam at the centre is changed by
a.1/2
b.1/8
c. 2
d.8
e.4

92.  If  the  depth  of  a  simply  supported  beam  carrying  an  isolated  load  at  its  centre,  is doubled, the deflection of the beam at the centre will change by  a factor of
a.   2
b.  ½
c.   8
d.  1/8
e.   4

93.  If  the  width(b)  and  depth  (d)  of  a  beam  simply  supported  with  a  central  load  are interchanged, the deflection at t he centre of the beam will be changed in the ratio of
a.   b/d
b.  d/b
c.   (d/b) 2
d.  (b/d) 2
e.   (b/d) 3

94. The deflection of any rectangular beam simply supported is
a.   directly proportional to its weight
b.  inversely proportional to its width
c.   directly proportional to the cube of its depth
d.  directly proportional to the cube of its length
e.   none of the above

95. Stress ina beam due to simple bending is
a.   directly proportional
b.  inversely prooportional
c.   curvilinearly related
d.  none of the above

96. For a  beam, if fundamental equations of statistics are not sufficient to determine all the reactive forces at the supports, structure is said to be
a.   determinate
b.  statically determinate
c.   statically indetermiate

97. If a beam is supported so that there are only three unknown reactive elements at the supports.  These  can  be  determined  by  using  the  following  fundamental  equation  of statistics
a. ΣH = 0
b.  ΣV = 0
c.   ΣH = 0,ΣV = 0
d.  ΣH = 0.,ΣV=0,ΣM=0
e.   ΣM=0,ΣH=0

98. For a beam having fixed end, the following unknown elements of the corresponding reactions are involved
a.   horizontal component at either end
b.  ‘vertical component at either end
c.   horizontal component at one end and vertical component at the other
d.  horizontal and vertical components at both the ends

99. a long vertical member, subjected to an axial compressive load is called
a.   a column
b.  a strut
c.   a tie
d.  a stanchion
e.   all the above

100. the ratio of the effective length of a column and the minimum radius of gyration of its cross sectional area, is known
a.   buckling factor
b.  slenderness ratio
c.   crippling factor

Strength of Materials & Structural Design – I

1.  b
2.  b
3.  a
4.  a
5.  a
6.  a
7.  d
8.  c
9.  a
10. c
11. c
12. d
13. c
14. b
15. b
16. b
17. b
18. c
19. d
20. b
21. c
22. d
23. c
24. a
25. e
26. a
27. b
28. d
29. b
30. Mr/r 2
31. e
32. a
33. a
34. a
35. c
36. d
37. b
38. c
39. P/E (1-m)
40. c
41. c
42. a
43. e
44. c
45. b
46. a
47. a
48. b
49. c
50. c
51. d
52. b
53. a
54. d
55. a
56. d
57. d
58. b
59. e
60. a
61. d
62. d
63. c
64. c
65. e
66. c
67. a
68. d
69. b
70. a
71. c
72. c
73. d
74. a
75. b
76. d
77. c
78. d
79. b
80. d
81. c
82. a
83. b
84. d
85. b
86. b
87. a
88. c
89. b
90. c
91. a
92. d
93. d
94. c
95. a
96. c
97. d
98. d
99. a
100.b