New Updates

BEAM ANALYSIS BY YIELD LINE THEORY


BEAM
ANALYSIS BY YIELD LINE THEORY
1. DATA
l           =          3m
g          =          6 KN / m
q          =          8 KN / m
fck       =          20 N/ mm2
fy         =          415 N/mm2
2.   CROSS SECTION DIMENSIONS:
D          =      Span/12
D          =      250mm
Adopt clear cover 30 mm
d          =          220 mm
D         =          250 mm
b          =          230 mm

3. LOAD CALCULATION:
Self weight of beam    =         0.23  0.25  25
                                                 =         1.437 KN / m
Dead Load                              =         6 KN / m
Finish load                              =          0.75 KN / m
Total Dead load(g)                  =          8.187 KN/m
Live load(q)                            =          8 KN / m
4. BENDING MOMENT & SHEAR FORCE:
Referring BM  & SF coefficients negative moment at interior support.
MU (-ve)          = 1.5      =1.5 = 23.05 KNm
Positive Bm  @ centre of span
MU (+ve)       = 1.5
            =       1.5 = 20.01 KNm
Maximum shear force at the support section
VU       =         1.5  0.6×L×  (g+q)
           =           1.5   0.6 3 (8.187 + 8)
VU       =          43: 704 KN
5. LIMITING MOMENT OF THE RESISTANCE:
     MU lim                                 =         0.138 fc k bd2
                                     =         (0.138   20   230   2002)  10-6
                                     =         25.39 KNm
MU < MU Lim; The section  is under reinforced.
6. TO GET AST:
Ast = 282.513 mm2     (Provide 2 bars of 16mm )
Ast = ,,Ast=402.123mm2
7. SHEAR REINFORCEMENT:
=     N/mm2
   45
Refer table 19 (IS-456) page No. 79
 N/mm2
Hence shear reinforcement are required
Balance shear(VUS)  =  
                        VUS    =     27.05 KN
Using 8mm  two legged stirrups the spacing is
            SV        =
                        =
            SV           = 266.955mm
8. CHECK FOR DEFLECTION CONTROL:
At centre of span:
           
                  = 
Modification factor Kt=1.0 neglecting bars in compression side KC=1.0 & KF=1
(L/d) Max = (L/d) basic  Kt KF   = 26 1  1= 26
 (L/d) Actual =     =           15<26
Hence deflection control is satisfied
9. DESIGN OF SHEAR REINFORCEMENT USING SP16 DESIGN TABLES:
VUS = 27.05 KN , d= 200mm
Compute parameter (VUS/d)
VUS/d   =       
VUS/d = 1.35 KN/m    
Spacing of 8mm  of two legged stirrups, SV = 230 mm
2. IS CODE DESIGN ANALYSIS
SLAB  (OFFICE ROOM)
1. DATAS:
Size of Room          =   6m×6.23m
Live load                 =   2KN/M2
W,c,Load                 =   0.8 KN/M2
Wall thickness         =    230mm
Concrete grade         =    M20
Steel grade                =   Fe415
2.DESIGN  OF SLAB:
Longer span/Shorter span=Ly/Lx
6.23/6=1.03<2
Hence it is two way slab
3.DEPTH REQUIRED FOR STIFFNESS:
Clear span For Longer span=6.23m
Clear span For shorter span=6m
Basic value for l/d for simply supported beam=32×0.8=28
d=Span/28×MF   (Assume M.F=1.0)                                                                                            
  =6000/28×1.0
d  =214.28mm
Assume 8mm ø rods & clear cover 20 mm
D=d+8/2+20
   =214.28+4+20=238.28mm                                                                                                                                                    (D=240mm)    &      (d=220mm)
           4.EFFECTIVE SPAN:
Eff.span=clear span+d
Lx=6000+220=6220mm & Ly=6230+220=6450mm 


5.LOAD CALCULATIONS:
Self weight of slab                  =0.22×25 = 5.5KN/M2
Weight of W.C                       =  0.8KN/M2
Live Load                               =2KN/M2
Total Load                              =8.3KN/M2
Factored Load(Wu)     =8.3×1.5
                           (Wu)              =12.45KN/M2
6.FACTORED BENDIND MOMENT:
MX=αX WLX2
MY=αY WLY2
LY/ LX=6.45/6.22=1.036m
Refer  IS code book From Table 27 ,Page No 91
αX=0.065,  αY=0.061
MX=αX WLX2
      =0.065×12.45×6.222
Mx=31.308KNM
MY=αY WLY2
      =0.061×12.45×6.222
My=29.381KNM
7.DEPTH  REQUIRED:
M.R=Qbd2
            29.38×106=2.76×1000× d2  ,     d=103.17mm  
              Hence  it is safe
8.AREA OF STEEL REINFORCEMENT (Mx DIRECTION):
M.R=0.87fy Ast d(1- fy Ast/bd fck)
31.308×106=0.87×415× Ast ×220(1-415×Ast/1000×220×20)
31.308×106=79.43×103Ast-7.491Ast2,Ast=410.01mm2(provided)
Area of minimum Reinforcement
Astmin=(0.12/100)bd
          = (0.12/100)×1000×220=264 mm2
Area of maximum Reinforcement
Astmax=0.04bd
           =0.04×1000×220=8800mm2
Astmin <   AstProvided <  Astmax
264mm2 <410.01mm2<8800mm2
SPACING
Assume 8 mm  ø rods
Spacing=(ast/Astprovided)×1000
              =(50.26/410.01)×1000 =122.55mm Say 130mm
SPACING LIMIT
1.3d=3×220=660mm
2.450mm
Provided 8mm ø rods @ 130mmc/c
9.AREA OF STEEL REINFORCEMENT (My DIRECTION):
 M.R=0.87fy Ast d(1- fy Ast/bd fck)
29.381×106=39.71×103Ast-7.491Ast2
Ast=383.78 mm2(provided)
Area of minimum Reinforcement
Astmin= (0.12/100)bd
          = (0.12/100)×1000×220
Astmin = 264mm2
Area of maximum Reinforcement
Astmax=0.04bd   =8800mm2 ,        
Astmin  <   AstProvided <  Astmax
264 mm2 <383.78mm2<8800mm2   
Hence it is safe


SPACING
Assume 8 mm  ø rods
Spacing=(ast/Astprovided)×1000
=(50.26/383.78)×1000=130.93mm Say 130mm

SPACING LIMIT
1.3d=3×220=660mm
2.450mm
Provided 8mm ø rods @ 130mmc/c
10.MIDDLE STRIP & EDGE STRIP:
Shorter span
Middle Strip for Shorter’s span=3/4  =  3/4×6.22 = 4.66m
Edge strip=1/8l  = 1/8×6.22=0.777m
Longer span
Middle Strip for Shorter’s span=1/8 ly   = 1/8×6.45=0.806m
Size of Torsion reinforcement mesh=ly/5 = 6.45/5=1.29m
Torsion reinforcement =3/4×AstProvided =3/4×410.01=307.05mm
Provide 8mmø rods for reinforcement
Spacing =(50.26/307.05)×1000
              =163.74mm Say 170mm
Provide 8mmø rods @ 170mmc/c
11.CHECK FOR SHEAR:
Nominal shear stress < permissible shear  stress
Ú‚v =K Ú‚c
Ú‚v=Vu/bd
Vu=38.71KN ,  Ú‚v=0.175N/mm2, Permissible shear stress (K Ú‚c)
100Ast/bd=0,035N/mm2     ,     Ú‚c=0.28 N/mm2   , Ú‚v< Ú‚c    
Hence it is safe

12.CHECK  FOR DEFLECTION:
FS=O.58 fy
Fs=240.7N/mm2                                                          [M.F=2,  BV=20]
Effective  depth=Span/(BV×MF)
                          =77.75mm
77.75mm<220mm
Hence it is safe.





Table : 3 Comparision  between  yeiled line  and is code design analysis  (Size of room = 6m X 6.23m)

SL.NO
YIELEDLINE ANALYSIS
IS CODE DESIGN ANALYSIS
1.
Total Depth(D)=200mm
Effective Depth(d)=175mm
Total Depth(D)=220mm
Effective Depth(d)=200mm
2.
Total Load=7.75KN/m²
Ultimate Load=11.63KN/m²
Total Load=8.3KN/m²
Ultimate Load=12.45KN/m²
3.
Area of Steel reinforcement=360mm²
Area of Steel reinforcement=410mm²
4.
Provide 10mmø bars @ 210mm c/c
Provide 8mmø bars @130mm c/c

BEAM  DESIGN
1.DATA
L=3000mm
Dead  load=6KN/m
Live Load=8KN/m
Finished load=0.75KN/m
Wall Support=230Mm
Concrete grade=M20, Steel grade=fe415
2.EFFECTIVE SPAN OF BEAM:
Effective Span =c/c of support
                          = 3230 mm
3.SIZE OF BEAM:
Effective depth=Span/12
                          =269.16mm , Say 270mm
Breadth=1/2d  =135mm
Clear cover=25mm,Use 16 mm ø
D=303 mm, Say 310 mm
D=310mm
d = 277mm, Say 280mm
d=280mm
4.  LOAD CALCULATIONS:
Self Weight                 =1× 0.31× 0.135× 25=1.046KN/m
Live Load                   = 8KN/m
Dead Load                  =6KN/m
Finished load  =0.75KN/m
T0tal Load                  =15.796KN/m
Factored Load            =23.694KN/m,  Factored BM=Wl2/8      = 30.89KN/m


5. TO GET AST:
Ast(Required)   = 388.33mm2
Numbers  of rods = 2nos
Provide 2nos of  16mmø rods
6. CHECK FOR MINIMUM & MAXIMUM AST:
ASTmin=(0.85/Fy) bd =77.421mm2
ASTmax=0.04 bd=1512mm2
7.CHECK FOR SHEAR:
Nominal shear stress < permissible shear  stress
Ú‚v =K Ú‚c  Ú‚    & v=Vu/bd
Vu=38.26KN ,      Ú‚v=1.012N/mm2
Permissible shear stress (K Ú‚c)
100Ast/bd=1.026N/mm2
Refer  From  Table 19 for I.S. 456
Ú‚c  = 0.625,  Ú‚cmax=2.8 N/mm2
Ú‚ v      > Ú‚c    >    Ú‚cmax
K Ú‚c=1×0.625=0.652N/mm2
8.SHEAR REINFORCEMENT:
Vus  =Vu  -  Ú‚cbd
Vus  =14.625× 103 N
Provided 8mmø rods  @ 2 legged Stirrups
1) Sv= ( 0.87 Fy  Asv d/ Vus)
              =694.41mm, Say 690 mm
2) Sv= ( 0.8 7 Fy Asv / bd)
  =96.01mm < Say 100mm
3)  0.75 d= 210mm
4)  450mm
Provide 8mmø rods & 2 Legged  Stirrups  @ 100mm c/c
9.CHECK  FOR DEFLECTION:
FS=O.58 fy
Fs=240.7N/mm2                                                          [M.F=2,  BV=20]
Effective  depth=Span/(BV×MF)
                           =80.75mm
80.75mm < 280mm
Hence it is safe

About Author:

I am Thomas Britto here to share my experiences in the civil engineering field to all my readers.Today many students are struggling to buy books at high prices. So I decided to start a blog and share my experience and knowledge with all my readers.


Let's Get Connected: Twitter | Facebook | Google Plus

1 comment

Anonymous said...

A tooth (plural teeth) is a undersized, calcified, whitish structure start in the jaws (or mouths) of many vertebrates and used to sever down food. Some animals, strikingly carnivores, also partake of teeth for hunting or instead of defensive purposes. The roots of teeth are covered by gums. Teeth are not made of bone, but to a certain extent of multiple tissues of varying density and hardness.

The ordinary systematize of teeth is similar across the vertebrates, although there is considerable modulation in their show up and position. The teeth of mammals drink profound roots, and this figure is also rest in some fish, and in crocodilians. In most teleost fish, however, the teeth are fastened to the outer rise of the bone, while in lizards they are fastened to the inner side of the jaw by one side. In cartilaginous fish, such as sharks, the teeth are joined around tough ligaments to the hoops of cartilage that type the jaw.